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1. Introduction

In Refs. [1–5] the free vibrations of a two-mass system connected to each other and with the
fixed ends are investigated. The non-linearity is of the cubic type. The model is a system of two
non-linear differential equations where the solution is in the form of Jacobi elliptic functions. In
discussing the solution obtained, the influence of the non-linear properties of the connecting
spring on the motion is shown.

The forced vibrations of a simple two-mass system containing only two connected masses is
discussed in Ref. [6]. A connecting spring with quadratic non-linear properties is considered. For
the case when the amplitude of the force on the leading element is constant, the vibration
properties of the system deeply depend not only on the coefficient of non-linearity of the spring
but also on the amplitude of the force. The motion of the leading and the lead mass is a function
of the mass distribution of the system.

The aim of this paper is to analyze the forced vibrations of a symmetric two-mass system
connected to fixed supports with linear springs. The connecting spring between the masses has
strong non-linear elastic properties. The mathematical model is a system of two coupled non-
linear and non-homogenous differential equations. The exact solution of the system is in the form
of Jacobi elliptic functions. The vibration motion of the leading and the lead mass under influence
of the constant force is investigated. The obtained solutions give some practical suggestions for
the constructions of machine tools.

2. Model of the system

The symmetrical two-mass system contains two equal masses m; which are connected to each
other with a non-linear elastic spring (Fig. 1). The non-linearity is of the quadratic type. The
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masses are connected to fixed supports with symmetric linear springs with rigidity coefficient k1: A
constant force F acts on the leading mass. The kinetic energy and the potential energy of the
system are

T ¼ 1
2

mð ’x2 þ ’y2Þ;

V ¼ 1
2

k1ðx2 þ y2Þ þ 1
2

k2ðx � yÞ2 þ 1
3

p2ð7Þjx � yjðx � yÞ2; ð1Þ

where x and y are the deflections of the masses, and k2 and p2 are the linear and the non-linear
coefficients of rigidity of the connecting spring. In the relation for the potential energy the absolute
function exists. It is due to the fact that the force in the spring is a quadratic function of
deformation and it satisfies the antisymmetric condition. Namely, if the spring is extended, a force
appears which has the tendency to contract and to put the spring in the previous state. The same
happens when the spring is pressed. In the first case the deformation is positive, and in the second
case it is negative. The signs in the bracket, ð7Þ; indicate the hard and the soft spring, respectively,
i.e., the plus sign in the bracket is for a hard spring and the minus sign in the bracket is for a soft
spring. This meaning of the bracket ð7Þ is applied throughout the whole paper.

Using relations (1) and the fact that the force F acts, the mathematical model of the system is

m .x þ k1x þ k2ðx � yÞ þ p2ð7Þjx � yjðx � yÞ ¼ F ;

m .y þ k1y � k2ðx � yÞ � p2ð7Þjx � yjðx � yÞ ¼ 0 ð2Þ

subject to the initial conditions

xð0Þ ¼ yð0Þ ¼ 0; ’xð0Þ ¼ ’yð0Þ ¼ 0: ð3Þ

3. Solving procedure

Introducing the new variables

X ¼ x � y;

Y ¼ x þ y; ð4Þ

in Eqs. (2), the transformed equations of motion are

.Y þ O2Y ¼ a; ð5Þ

.X þ cX þ ð7Þb2jX jX ¼ a; ð6Þ
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where

c ¼
ðk1 þ 2k2Þ

m
¼ O2 þ

2k2

m
; b2 ¼

2p2

m
;

O2 ¼
k1

m
; a ¼

F

m
: ð7Þ

The initial conditions (3) are transformed to

Y ð0Þ ¼ 0; ’Yð0Þ ¼ 0; ð8Þ

X ð0Þ ¼ 0; ’Xð0Þ ¼ 0: ð9Þ

Eqs. (5) and (6) represent two separate second order non-homogenous differential equations
which are solved separately subject to the initial conditions (8) and (9), respectively. Both
differential equations describe the forced vibrations of a system with two degrees of freedom,
where the first system is linear, and the second is non-linear.

Substituting the solutions of Eqs. (5) and (6) into Eq. (4), the motion of the leading and the lead
masses are

x ¼
Y þ X

2
; y ¼

Y � X

2
: ð10Þ

It means that the total motion of the masses is a simple superposition of two separate oscillatory
motions.

For discussion of results (10), it is necessary to obtain the exact solutions of Eqs. (5) and (6).

4. Results and discussion

Consider the solution of Eq. (5) subject to Eq. (8). It is of the oscillatory type and has the
following form:

Y ¼
a

O2
ð1 � cosOtÞ ¼

2a

O2
sin2 Ot

2
: ð11Þ

The amplitude of vibration is a function of the external force F : The frequency and the period of
vibration depend on the mass m and the rigidity k1 of the linear spring. Namely, the mathematical
model (5) describes the forced vibration of the mass m connected to a fixed support with the linear
spring k1: In this differential equation the influence of the connecting spring does not appear. It is
worth saying that the function Y (11), which represents the closed-form analytical solution of
Eqs. (5) and (8), depends on the square of the circular sine function and due to this fact it is a non-
negative function for all values of time t:

The second equation (6) is a non-linear non-homogenous second order differential equation. In
Ref. [7] the solution of the differential equation (6) with respect to the initial conditions (9) is
obtained. Independently of the type of the non-linearity, i.e., for a soft and for a hard non-
linearity, the solution has the square form of one of the Jacobi elliptic functions [8]. Due to this
fact, the function X is also non-negative for all values of time t: In the next section the exact
solution of Eq. (6) for soft, hard and linear springs are discussed.
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4.1. System with soft spring

For a mechanical system with a soft spring, the lower sign in Eq. (6) is used and its particular
solution for the initial conditions (9) is according to Ref. [7]

X ¼ As sn2 Os

2
t; k2

s

� �
; ð12Þ

where

As ¼
3c

4b2
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

16

3

ab2

c2

s2
4

3
5; ð13Þ

Os ¼ 2

ffiffiffiffiffiffiffiffi
a

2As

r
; ð14Þ

k2
s ¼

b2A2
s

3a
; ð15Þ

and sn is a Jacobi elliptic function (see Ref. [8]). Solution (12) represents an oscillatory motion.
Introducing parameters (7), the amplitude of vibration is

As ¼ Al
2

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 16

3
fB

q ; ð16Þ

where the coefficients of non-linearity B is

B ¼
2p2

ðk1 þ 2k2Þ
; ð17Þ

the forcing term is

f ¼
F

ðk1 þ 2k2Þ
ð18Þ

and

Al ¼ 2f : ð19Þ

Relation (19) is the amplitude of vibration of the linear system. Namely, for the linear system
the non-linearity is zero, i.e., B ¼ 0 and the amplitude of vibration (16) transforms to the linear
one (19). Due to the non-linearity a correction to the amplitude of vibration of the linear system
exists. This correction is a function not only of the forcing term but also of the coefficient of non-
linearity. The amplitude of vibration is higher than for the linear system ðAs > AlÞ: For the same
value of the forcing term the amplitude of vibration is higher for higher value of the coefficient of
non-linearity.

The frequency of the Jacobi elliptic function is

Os ¼
1ffiffiffi
2

p Ol

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 16

3 fB

qr
; ð20Þ
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where the frequency of the system with linear spring is

Ol ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ 2k2

m

r
: ð21Þ

It can be concluded that the frequency of vibration of the linear system is multiplied by a
correction term which is a function of the coefficient of non-linearity and forcing. For the system
with a soft spring the frequency of vibration is smaller than for the linear spring. It is a function of
the forcing term: the smaller the forcing term the frequency tends to Ol : The minimal value of the
frequency is Os ¼ Ol=

ffiffiffi
2

p
for the forcing term f ¼ 3=ð16BÞ:

The modulus of the Jacobi elliptic function is

k2
s ¼

16

3

Bf

½1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 16

3
Bf

q
�2
: ð22Þ

For the linear case, i.e., B ¼ 0; it is k2 ¼ 0 and the sn Jacobi elliptic function transforms to the
harmonic sine function [9]. The transformed solution (12) is for the linear system

X ¼ f ð1 � cosOl tÞ ¼ Al sin2 Ol

2
t: ð23Þ

The period of vibration is

Ts ¼
4Kðk2

s Þ
Os

; ð24Þ

where Kðk2
s Þ is the complete elliptic integral of the first kind [9]. Due to relations (20) and (22) it is

evident that the period of vibration of the system is a function of the coefficient of non-linearity
and also of the coefficient of forcing. It is not the case for the linear system (13). As the value of
4Kðk2

s ÞX2p and OspOl the period of vibration of the system with soft spring is
TsXTl ;

where Tl ¼ 2p=Ol is the period of vibration of the system with linear spring.
The oscillatory solution (12) has a limitation: it is valid only for

1 �
16

3

ab2

c2
X0; ð25Þ

i.e.,

fBp 3
16
: ð26Þ

It means that the region of oscillatory motion depends on the non-linear properties of the system.
The higher the non-linearity the smaller the available forcing term.

4.2. System with hard spring

For the system with a hard spring, the upper sign in Eq. (6) is used. As a consequence of
the imaginary modulus transformation, the particular solution of Eq. (6) for Eq. (9) is according
to Ref. [7]

X ¼ An

h sd2 Oh

2
t; k2

h

� �
; ð27Þ
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where sd is a Jacobi elliptic function (see Ref. [8]),

Oh ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2Ah

1 þ
b2A2

h

3a

� �s
; ð28Þ

k2
h ¼

b2A2
h=ð3aÞ

ð1 þ b2A2
h=ð3aÞÞ

; ð29Þ

An

h ¼ Ah

1

ð1 þ b2A2
h=ð3aÞÞ

ð30Þ

and

Ah ¼
3

4

c

b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

16

3

b2a

c2

s
� 1

0
@

1
A: ð31Þ

After substituting Eq. (7) into Eq. (31) it is

Ah ¼ Al

2

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 16

3
Bf

q : ð32Þ

Solution (27) is of oscillatory type. The amplitude of vibration is

An

h ¼ Al

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 16

3
Bf

q ð33Þ

and it is a product of the amplitude of vibration of the linear system and a correction term which
depends on the coefficient of non-linearity and the forcing term. The amplitude of vibration of the
non-linear system with hard spring is smaller than the amplitude of vibration of the system with
linear spring ðAn

hoAlÞ:
The frequency of vibration is

Oh ¼ Ol

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 16

3
Bf

4

q
which is higher than the frequency of the linear system and depends on the non-linear properties
of the system and on the forcing term.

The modulus of the Jacobi elliptic function is

k2
h ¼

16
3

fB

ð1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 16

3
Bf

q
Þ2 þ 16

3
fB
:

The period of vibration is

Th ¼
4Kðk2

hÞ
Oh
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and comparing it to the period of vibration of the system with a linear spring is

ThoTl :

5. Conclusions

In this paper the forced vibrations of a symmetric two-mass system connected by a spring with
quadratic non-linear elastic properties is investigated. Analyzing the results obtained the following
is concluded:

1. The motion of the symmetric two-mass system connected to fixed supports and subject to a
constant force is oscillatory and the motion of the masses is a simple superposition of two
oscillatory motions.

2. The motion of the leading mass on which the force acts and of the lead mass without forcing
is different. The difference of the motion depends on the rigidity properties of the connecting
spring. Namely, for higher values of the coefficient of linear rigidity k2 the amplitude of one of the
constituting motions ðX Þ is quite small and the corresponding period of vibration tends to zero.
Then the motion of both the masses are in the same direction and are approximately the same, i.e.,
xEyEY=2: For that case, if the rigidity coefficient k1 of the spring is also high, the vibrations of
the masses are negligible. Then the active force is used for useful work and the vibrations, which
are the side effect, are eliminated. This property of the system is of special interest for some
machine parts: for example, in machine tools for plastic deformation of metallic and non-metallic
objects where the working velocity is high [10].

3. For the special instants of time when t ¼ Ts; t ¼ Tl and t ¼ Th; respectively, for the system
with soft, linear and hard spring, the corresponding amplitude of vibration X is zero and the both
masses have the same deflections xðTÞ ¼ yðTÞ ¼ Y ðTÞ=2:

4. The qualitative properties of the motion of the symmetric two-mass system connected with
linear or non-linear springs are the same, but differ quantitatively. For the system with a non-
linear spring the frequency of vibration and also the period of vibration depend on the intensity of
the external force. It is not the case for the linear spring.
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